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• Solar flares are the strongest transient energy release
phenomena in the Heliosphere

• Tremendous amount of energy (up to 1032 erg) is
released during one event in a timescale of tens of minutes

• Energy released during one solar flare is enough to cover
the world energy consumption for 10 thousand years!

Solar Flares



Solar flares represent the most prominent manifestation of the Sun’s magnetic activity. They are often accompanied by high-
speed coronal mass ejections and high-energy particles that greatly impact Earth’s space environment and space weather,
technological and biological systems:
• Destroy satellites equipment
• Affect radio communications and GPS navigation

• Disrupt power grids by return currents
• Provide potential danger for space exploration

Impact on Space Weather
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Multiwavelength nature of flares

Standard model of solar flares includes physical processes reflected in different wavelengths / observation types:
• Magnetic reconnection in the coronal current sheet (current sheet structure observed in EUV; termination shocks reported in radio)
• Propagation of accelerated particles down into the chromosphere (gyro synchrotron radio emission; hard X-ray bremsstrahlung

emission; sometimes photospheric white-light emission)
• Expansion of the heated chromospheric plasma into the coronal loops (chromospheric evaporation; visible in EUV images and

spectra, and recognized in soft X-ray emission behavior)
• Eruptions of the plasma into the interplanetary space (coronal mass ejections; visible in EUV images and coronagraph observations)



Observing Solar Flares
Solar flares cover the whole range of electromagnetic radiation
spectrum, from radio- to gamma-rays, observed by many NASA space
missions, including:

• Solar Dynamics Observatory (SDO)

• Geostationary Operational Environmental Satellite (GOES)

• Solar and Heliospheric Observatory (SoHO)

• Solar Terrestrial Relations Observatory (STEREO)

• Reuven Ramaty High Energy Solar Spectroscopic Imager
(RHESSI)

• Interface Region Imaging Spectrograph (IRIS) …

For a complete understanding of the flares it is necessary to perform a
combined multi-wavelength analysis and classify large amounts of
scientific data produced by space-based and ground-based
observatories. Such classification and analysis will allow us to get
clearer physical picture the observed phenomena, from their onset to
space weather impacts.

Heliophysics Systems Observatory. Credits: https://www.nasa.gov/

https://www.nasa.gov/
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Part I. Helioportal



Motivation
• Many problems in solar-terrestrial physics require analyses to be performed using data from a particular set of
instruments, and/or for a sample of flares with particular characteristics.

• Currently flare records made by different instruments are stored separately from each other. Matching records from
different flare lists and search for the flare events with specific physical characteristics are complicated tasks…



Announcement of Helioportal (IMIDSF)

An Interactive Multi-Instrument Database of Solar Flares (IMIDSF, https://solarflare.njit.edu/) was developed for
efficient data search, integration of different flare lists, and representation of observational data. IMIDSF is fully
functional and allows users to search for uniquely identified flare events based on physical characteristics
(descriptors) and availability of observations of a particular set of instruments.

The IMIDSF is a collaborative project among the NASA Advanced Supercomputing (NAS) Division, NASA
Ames Heliophysics Modeling and Simulation team, and the New Jersey Institute of Technology’s Department of
Physics, Department of Computer Science and the Center for Computational Heliophysics.

As part of a larger effort to provide a data portal for collaborative heliophysics research, NAS Division staff
integrated and added security checks to the Interactive Multi-Instrument Database of Solar Flares in a new
heliophysics portal, hosted on the NAS website: http://helioportal.nas.nasa.gov.

https://solarflare.njit.edu/
http://helioportal.nas.nasa.gov/


Helioportal Milestones

Design and Implementation of a 
Multi-Instrument Database of Solar 
Flares (NASA NNX15AN48G, PI 
Gelu Nita, Co-Is: Alexander 
Kosovichev and Vincent Oria)

June 2015: Project 
receives NASA support

First presentation of the Database 
of Solar Flares. Workshop 
supported by 2015 Faculty Seed 
Grant from NJIT, PI Alexander 
Kosovichev

January 2016: NJIT-
NASA Workshop on 
Computational 
Heliophysics

First live demonstration of the 
Database of Solar Flares (E-
poster)

April 2016: Space 
Weather Workshop

The Interactive Multi-Instrument 
Database of Solar Flares 
(IMIDSF, 
https://solarflare.njit.edu/) is 
released. The launch is 
announced in Solarnews.

February 2017: The 
IMIDSF launch is 
announced

Sadykov V.M., Kosovichev A.G., 
Oria V., and Nita G.M. “An 
Interactive Multi-instrument 
Database of Solar Flares”. 2017, 
The Astrophysical Journal 
Supplement Series, Volume 231, 
Issue 1, article id. 6.

July 2017: The IMIDSF 
paper is published in 
ApJS

August 2017: IMIDSF 
transfer to Helioportal is 
started

The project is open for public, 
https://helioportal.nas.nasa.gov

February 2018: The 
Helioportal is launched



Interactive Multi-Instrument Database of Solar Flares 
(IMIDSF, https://helioportal.nas.nasa.gov/, https://solarflare.njit.edu/)

https://helioportal.nas.nasa.gov/
https://solarflare.njit.edu/


IMIDSF Structure
Helioportal consists of several functional
elements:

1. Back-End MySQL database containing
primary and secondary event lists and
background data sources

2. Back-End daily-update system (PHP
and Python scripts) for data upload,
processing and enrichment

3. Front-End web application with the
user query form and presentation of the
query results and event summary



Primary Event Lists

GOES flare list 2002 Jan – current time ftp://ftp.swpc.noaa.gov/pub/warehouse/

RHESSI flare list 2002 Feb – current time http://hesperia.gsfc.nasa.gov/hessidata/dbase/

HEK flare list 2010 Feb – current time https://www.lmsal.com/isolsearch

Secondary Event Lists

IRIS observing logs 2013 Jul – current time http://iris.lmsal.com/search/

Hinode flare catalog 2006 Nov – 2016 Jul http://st4a.stelab.nagoya-u.ac.jp/hinode_flare/

Fermi GBM flare catalog 2008 Nov – current time https://hesperia.gsfc.nasa.gov/fermi/gbm/qlook/

Nobeyama coverage check 2010 Jan – current time ftp://solar-pub.nao.ac.jp/pub/nsro/norp/xdr/

OVSA flare catalog 2002 Jan – 2003 Dec http://www.ovsa.njit.edu/data/

EOVSA flare catalog 2017 Jan – current time http://www.ovsa.njit.edu/wiki/index.php/Expanded_Owens_Valley_Solar_Array

CACTus CME catalog 2002 Jan – current time http://sidc.oma.be/cactus/

Filament eruption catalog 2010 Apr – 2014 Oct http://aia.cfa.harvard.edu/filament/

Konus-WIND flare catalog 2002 Jan – 2016 Jul http://www.ioffe.ru/LEA/Solar/index.html

Background Data Characteristics

GOES X-ray light curves (and T&EM) 2002 Jan – current time https://umbra.nascom.nasa.gov/goes/fits/

SDO/EVE ESP light curves 2010 Feb – current time http://lasp.colorado.edu/eve/data_access/

Nobeyama Polarimeter data 2010 Jan – current time ftp://solar-pub.nao.ac.jp/pub/nsro/norp/xdr/

Helioportal Data Sources



Helioportal Data 
Enrichment and Processing

Our daily-based processing includes:

• Identification and assignment of unique identifiers
(UniqueIDs) for flares from GOES, RHESSI, and HEK
flare catalogs

• Determination of missing coordinate information from
the position of parental active regions

• Calculation of some data products (example:
temperatures and emission measures based on GOES
observations in 0.5-4 Å and 1-8 Å channels)

Counterparts for gev_20140612_041400
M2.0 class flare from GOES, RHESSI
and HEK flare catalogs



Examples of Application
Statistical Study of Chromospheric Evaporation in Solar Flares
• To connect energy fluxes deposited in solar flares and the properties of the responding solar plasma and compare results with the RHD chromospheric

evaporation simulations, the dataset of flares simultaneously observed by IRIS (here in the fast-scanning regime) and RHESSI is required
Statistical study of Soft X-ray Emission Properties and Timescales from GOES observations
• The results of the application of TEBBS algorithm (T and EM calculations) for GOES flares detected from 2002 until today are available as a data

product at Helioportal (https://helioportal.nas.nasa.gov/). IMIDSF allows us to integrate GOES and RHESSI flares and catch the difference
between the flares with different timescale relations.

Forecasting of Solar Flares using Machine-Learning Methods
• Helioportal allows the users to request the statistics of flares for each AR in one click. Integration of the AR magnetic field descriptors (SHARP

parameters and PIL parameters) with flare events is planned. It is also possible to request not only the GOES class but other physical
characteristics of solar flares, and, in principle, work on the prediction of these characteristics.

SOLID GOES 
class

RHESSI energy 
range, keV IRIS mode IRIS cadence, s Hinode coverage

SOL2014-02-13T01:32:00 M1.8 6-12 Coarse raster, 8 slits 41.7 XRT, EIS

SOL2014-02-13T02:41:00 M1.0 3-6 Coarse raster, 8 slits 41.7 XRT

SOL2014-03-29T17:35:00 X1.0 100-300 Coarse raster, 8 slits 71.9 SOT FG, XRT, EIS

SOL2014-06-12T18:03:00 M1.3 25-50 Coarse raster, 8 slits 21.3 XRT

SOL2014-06-13T00:30:00 C8.5 12-25 Coarse raster, 8 slits 21.3 -

SOL2015-03-11T11:21:00 C5.8 12-25 Coarse raster, 8 slits 75.0 SOT SP

SOL2015-11-04T13:31:00 M3.7 50-100 Coarse raster, 16 slits 49.5 -

https://helioportal.nas.nasa.gov/


Future Plans
Our long-term goal is to expand the functionality of
the Helioportal. We are currently developing the
Intelligent Database of Solar Events and Active
Regions (IDSEAR). We plan to include the
following into new database:

• Increase number of flare and flare-related event
sources and observational characteristics/logs

• Include Active Region characteristics (PIL
characteristics, SHARP parameters) and
integrate them with solar events

• Integrate solar events with existing models;
provide initial conditions for models

• Provide multi-level access to the database
(possibility to work with both the products of
integration and catalogs before integration; started)

• Provide various data products (subsurface flow
maps, NLFFF extrapolations for flaring ARs etc)

• Develop IDL and Python packages to access the
database, requests catalogs and data products

• Integrate with other resources

HELIOPORTAL

Catalog Generator 
(flares events with 
particular physical 

characteristics)

Database of 
prepared descriptors 
for flare and flare-

related event 
forecasts

Access Point to 
Solar and 

Heliospheric data 
and metadata

Access Point to 
various data 

products for flare 
and flare-related 

events

Integration Point for 
observations and 

models of the flare 
and flare-related 

events



IDSEAR in progress
At the current stage, we have completed the following steps
towards the IDSEAR implementation:
1. Designed IDSEAR and performed accurate mapping of the

designed schema to the relational MySQL database
2. Transferred data from IMIDSF into IDSEAR
3. Integrated records from different flare catalogs and assigned

unique flare identifiers (UniqueIDs) for the flare records
4. Loaded SHARP data from JSOC/Stanford and PIL

descriptors as tables under “Active region over time” entity
5. Implemented and tested codes for various AR data products

and descriptors (NLFFF cubes, subsurface flow maps and
related descriptors)

IDSEAR ERD

Ratio of fluxes carried by highly-twisted and non-twisted 
magnetic field lines for active region AR12673



IDSEAR queries
IDSEAR DB already operates at NJIT
server. Here are some examples of
future “typical” queries to the DB.

Example 1.
• Properties of the parental active

regions (SHARP parameters) for
strong flares (M and X class) 12
hours before the flare.

• About 45 seconds for whole
database request

Example 2.
• List of active regions (SHARPs) appeared

on the Sun at user-defined time,
longitude, and latitude ranges

• About 40 seconds for whole table request

API and UI are coming soon…



Part II. Predicting 
Solar Flares



Where will an M-class flare happen?

4 M-class flares

1 M-class flare

1 M-class flare

0 M-class flares

0 M-class flares

0 M-class flares

0 M-class flares

SWPC NOAA flare probability for this day: 70%



• The prediction of strong solar flares is one
of the key questions of Solar Physics: solar
flares are one of the primary drivers of space
weather

• Besides many attempts, the operational
predictions are still mainly done based on
experts opinion and experience.

• Many observational studies and previous
ML studies confirmed the important role of the
properties of the magnetic field in active
regions for prediction of solar flares

• Attempts to predict flare events help us to
understand physics of solar flares and their
triggering mechanisms

Credits: https://helioviewer.org/

Primary goal: utilize an advantage of high volumes of observational data 
to discover new flare-sensitive features, evaluate importance of particular 

types of observations, and potentially enhance operational forecasts

Why is it important to predict flares?



• The current daily operational forecasts at
the SWPC are made by forecasters for each
of the three upcoming days using a modified
three-component Zurich class (McIntosh
1990) and magnetic class (Smith & Howard
1968) for each active region and historical
look-up tables of flare probability as a
function of active region class, flaring
history, growth/decay of sunspots. The
calculated probability is corrected by
forecasters based on their experience.

• The flare prediction probabilities are
correlated stronger with the current flare
activity than with the next-day activity
• Nevertheless, the expert-based
probabilities represent valuable information
for the flare forecast.

Properties of the SWPC NOAA Operational Forecasts

Cross correlation coefficient of the expert probabilities of M-class and X-
class flares and various SXR characteristics of the flare activity



• The magnetic field is the only reservoir able to store the
typical energy released during the solar flares => one has to
look at magnetic properties of parental active regions

• NASA’s Helioseismic and Magnetic Imager onboard the
Solar Dynamics Observatory (SDO/HMI) provides the
routine coverage of the whole Sun photospheric line-of-sight
and vector magnetic field data since 2010, resulted in more
than 1PB generated data

• Examples of magnetic field descriptors in Active Regions:

• Space weather HMI Active Region Patches (SHARPs, Bobra
et al. 2014)

• Properties of the magnetic field Polarity Inversion Line (PIL)
in strong field regions (Sadykov and Kosovichev 2017)

• Descriptors of extrapolated 3D magnetic field structure (free
energy excess, ratio of fluxes in twisted/untwisted lines, …)

Credits: Bobra et al. 2014

Magnetic field in active regions



PIL detection algorithm and extracted features

• Previous statistical and case studies of solar flares demonstrated importance of the magnetic polarity inversion lines (PILs) in
active regions for the flare initiation and development process

• We divide the line-of-sight active region magnetogram into regions with strong positive field (“positive” segments), strong
negative field (“negative” segments), and weak field (“neutral” segments).

• For each AR, we remap the LOS magnetogram onto the heliographic coordinates, and solve the segmentation problem
formulated as an optimization task (Chernyshov et al, 2011).

• The segmentation results are used to determine the PIL and corresponding characteristics



Schema for the binary flare forecast in active region
1. Construction of labeled data set

• Measure characteristics of the active region (SHARPs, PIL) at a certain time moment

• Determine if a strong flare happened in the active region within certain time (say, 24 hours) 
from the considered moment

• One has: vector of characteristics and its label (0 or 1)

2. Separation of data into train/validation/test data subsets

3. Feature selection on train data set (F-score, Gini importance, other)

4. Optimization of the classifier on train/validation data sets

• Different classifiers have different inner parameters which should be optimized

• Target: maximization of a certain metrics. Example: !"" = $%
$%&'( −

'%
'%&$(

5. Performance of the classifier on test data set. Comparison of results.



Examples of previous results (TSS)
Sadykov and Kosovichev (2017) PIL characteristics only PIL + global characteristics 50% decreased threshold values

Prediction of ≥M1.0 flares 0.76±0.03 0.74±0.03 0.76±0.03

Prediction of ≥X1.0 flares 0.84±0.07 0.84±0.07 0.85±0.04

EXPERT-BASED 
PREDICTIONS

NICT SWFC
(from Nishizuka et al 2017)

Royal Observatory of Belgium
(from Nishizuka et al 2017)

NOAA SWPC
(from Crown 2012, Table 4)

≥M1.0 flares 0.50 0.34 0.53

≥X1.0 flares 0.21 - 0.49

OTHER WORKS Bobra & Couvidat (2015)
(vector MF)

Nishizuka et al (2017)
(vector MF, flare prehistory etc.)

Nishizuka et al (2018)
(operational separation of DS)

≥M1.0 flares 0.82 (SVM) 0.87 (SVM), 0.91 (kNN) 0.80 (DNN), 0.33 (SVM)

≥X1.0 flares - 0.88 (SVM), 0.91 (kNN) -

For more accurate comparison with expert-based predictions (any operational forecast) one needs at least to unify dataset 
structures. We attempt to do it by obtaining daily descriptors and predicting next day flare activity (as done by SWPC).

Primary goal: investigate the possibility of enhancement of the SWPC NOAA operational forecasts by employing machine-
learning algorithms to combine expert predictions with magnetic field and soft X-ray flux characteristics



1. SWPC NOAA operational forecasts (probabilities) of M/X-class flares for
the next day (ftp://ftp.swpc.noaa.gov/pub/warehouse/)

2. Statistics of M/X-class flares from https://helioportal.nas.nasa.gov/

3. SXR 1-8Å flux obtained by GOES/XRS

4. Polarity Inversion Line (PIL) characteristics obtained from SDO/HMI line-
of-sight magnetic field data (Sadykov and Kosovichev, 2017)

5. Space Weather HMI Active Regions Patches for NOAA ARs (SHARPs,
Bobra et al. 2014)

The data are obtained for May 01, 2010 – Dec 31, 2017 time period. For each day
for the midnight time, we obtain the following features of the solar activity:

• Averaged and peak SXR fluxes during the 1-3 preceding days

• Total number of M-class and X-class flares during the 1-3 preceding days

• Daily mean and maximum values of the PIL characteristics (maxima over
ARs are selected)

• Daily mean and maximum values of the SHARP characteristics (maxima
over ARs are selected)

Our study: Data Sources and 
Descriptors

Credits: https://helioportal.nas.nasa.gov/, Sadykov and 
Kosovichev 2017, Bobra et al. 2014, RHESSI Browser 

(http://sprg.ssl.berkeley.edu/~tohban/browser/) 

https://helioportal.nas.nasa.gov/
http://sprg.ssl.berkeley.edu/~tohban/browser/


1. The labels for the data set are assigned: 1 if there is an M/X-class flare which happened on the next
day, 0 otherwise. The days when the flares were only located close to the limb are ignored.

2. The features are ranked according to their Fisher ranking score

3. The dataset is randomly shuffled and divided 10 times into the train-test subsets with the ratio 2/1.

4. For each classification algorithm, metrics to maximize, and feature type (PIL, SHARP, SXR), the
following algorithm is performed:
1. Select two features with the highest F-score (or the feature of the highest F-score and SWPC prediction probabilities)

2. Find the classifier parameters which maximize the mean of the metrics (score) across the train-test data sets

3. Introduce the feature with the next highest F-score and temporarily add it to the previously-considered features

4. Find the classifier parameters which maximize the mean of the metrics across the train-test data sets

5. If the score is higher than previously-obtained plus certain threshold, add the feature permanently. Discard it otherwise.
Return to the step c.

Feature Selection Algorithm



Tested ML algorithms

ML 
classification 
algorithms

Support Vector 
Machine 
(SVM)

K-Nearest 
Neighbor 
classifier

Random 
Forest

Logistic 
Regression

AdaBoost

Multi-Layer 
Perceptron 

(MLP)

• Performance of ML algorithms was measured
in terms of True Skill Statistics (TSS) and
Heidke Skill Score (HSS):

• For each algorithm and metrics, we find
optimal parameters which maximize the score
averaged over train-test subset pairs

• The performance is tested for each group of
parameters (PIL/SHARP/SXR/ALL) and
including / excluding SWPC probabilities



Enhancement of the Binary (Yes/No) Forecast
We investigate the possibility to enhance the binary (yes/no) forecast of M-class and X-class flares by combining the SWPC
NOAA expert predictions (probabilities) with various features (SXR, PIL, SHARP) :

• Support Vector Machine Classifiers (SVMC, SVC) perform better than other considered machine-learning
algorithms/classifiers (k-Nearest Neighbor, Random Forest, Neural Networks of different architecture)

• The classifier trained on just one of the feature group (SXR, PIL, SHARP) performs at the same level as expert
predictions/probabilities

• The classifier trained on all available features except SWPC NOAA expert predictions significantly outperforms the
SWPC NOAA expert predictions in terms of TSS and HSS

TSS, M flares ES threshold SVM Linear SVM RBF SVM 
Sigmoid

Logistic 
Regression kNN RF AdaBoost NNA1 NNA2 NNA3

Expert scores (ES) 0.560±0.017 - - - - - - - - - -

PIL + ES - 0.601±0.041 0.598±0.035 0.601±0.040 0.595+0.034 0.541±0.033 0.295±0.045 0.589+0.034 0.572±0.042 0.574±0.041 0.577±0.042

SHARP + ES - 0.560±0.024 0.586±0.030 0.579±0.029 0.583+0.026 0.515±0.045 0.285±0.033 0.564+0.031 0.551±0.041 0.537±0.035 0.506±0.059

SXR + ES - 0.568±0.040 0.567±0.038 0.568±0.043 0.567+0.042 0.470±0.029 0.233±0.027 0.559+0.045 0.546±0.028 0.549±0.039 0.545±0.039

ALL + ES - 0.612±0.039 0.632±0.031 0.617±0.041 0.620+0.034 0.550±0.032 0.294±0.049 0.611+0.035 0.563±0.063 0.522±0.042 0.539±0.039

PIL – ES - 0.587±0.031 0.588±0.037 0.588±0.023 0.594+0.024 0.521±0.028 0.286±0.038 0.572+0.032 0.546±0.039 0.576±0.031 0.575±0.033

SHARP – ES - 0.573±0.0.37 0.583±0.034 0.587±0.032 0.584+0.033 0.510±0.040 0.244±0.033 0.572+0.034 0.557±0.033 0.535±0.045 0.527±0.039

SXR – ES - 0.564±0.043 0.570±0.039 0.569±0.036 0.570+0.035 0.463±0.035 0.216±0.027 0.567+0.039 0.541±0.039 0.543±0.028 0.535±0.042

ALL – ES - 0.619±0.030 0.627±0.033 0.635±0.041 0.628+0.025 0.553±0.038 0.289±0.046 0.618+0.028 0.564±0.049 0.499±0.052 0.529±0.057



Enhancement of the Binary (Yes/No) Forecast
We investigate the possibility to enhance the binary (yes/no) forecast of M-class and X-class flares by combining the SWPC
NOAA expert predictions (probabilities) with various features (SXR, PIL, SHARP) :

• Support Vector Machine Classifiers (SVMC, SVC) perform better than other considered machine-learning
algorithms/classifiers (k-Nearest Neighbor, Random Forest, Neural Networks of different architecture)

• The classifier trained on just one of the feature group (SXR, PIL, SHARP) performs at the same level as expert
predictions/probabilities

• The classifier trained on all available features except SWPC NOAA expert predictions significantly outperforms the
SWPC NOAA expert predictions in terms of TSS and HSS

HSS, M flares ES threshold SVM Linear SVM RBF SVM 
Sigmoid

Logistic 
Regression kNN RF AdaBoost NNA1 NNA2 NNA3

Expert scores (ES) 0.412±0.014 - - - - - - - - - -

PIL + ES - 0.444+0.031 0.445+0.035 0.444+0.029 0.449+0.026 0.396+0.023 0.352+0.044 0.430+0.028 0.428+0.039 0.424+0.028 0.431+0.023

SHARP + ES - 0.403+0.030 0.426+0.034 0.411+0.042 0.414+0.032 0.372+0.040 0.335+0.028 0.414+0.028 0.400+0.041 0.401+0.051 0.405+0.043

SXR + ES - 0.417+0.021 0.417+0.019 0.412+0.020 0.426+0.022 0.361+0.035 0.286+0.049 0.410+0.035 0.403+0.024 0.394+0.011 0.386+0.024

ALL + ES - 0.467+0.040 0.477+0.034 0.467+0.036 0.476+0.031 0.408+0.011 0.350+0.038 0.449+0.024 0.435+0.031 0.441+0.040 0.420+0.053

PIL – ES - 0.426+0.042 0.430+0.041 0.432+0.041 0.440+0.039 0.377+0.024 0.341+0.047 0.425+0.038 0.401+0.050 0.413+0.033 0.407+0.042

SHARP – ES - 0.420+0.037 0.439+0.042 0.428+0.042 0.423+0.038 0.362+0.038 0.315+0.030 0.412+0.040 0.386+0.050 0.370+0.040 0.388+0.050

SXR – ES - 0.406+0.025 0.415+0.027 0.412+0.019 0.416+0.018 0.332+0.028 0.268+0.030 0.398+0.027 0.398+0.019 0.379+0.046 0.396+0.010

ALL – ES - 0.485+0.038 0.488+0.036 0.482+0.036 0.480+0.030 0.400+0.029 0.364+0.035 0.457+0.038 0.435+0.044 0.431+0.042 0.443+0.042



Enhancement of the Binary (Yes/No) Forecast
We investigate the possibility to enhance the binary (yes/no) forecast of M-class and X-class flares by combining the SWPC
NOAA expert predictions (probabilities) with various features (SXR, PIL, SHARP) :

• Support Vector Machine Classifiers (SVMC, SVC) perform better than other considered machine-learning
algorithms/classifiers (k-Nearest Neighbor, Random Forest, Neural Networks of different architecture)

• The classifier trained on just one of the feature group (SXR, PIL, SHARP) performs at the same level as expert
predictions/probabilities

• The classifier trained on all available features except SWPC NOAA expert predictions significantly outperforms the
SWPC NOAA expert predictions in terms of TSS and HSS

TSS, X flares ES threshold SVM Linear SVM RBF SVM 
Sigmoid

Logistic 
Regression kNN RF AdaBoost NNA1 NNA2 NNA3

Expert scores (ES) 0.575+0.079 - - - - - - - - - -

PIL + ES - 0.610+0.126 0.605+0.150 0.679+0.129 0.651+0.153 0.583+0.095 0.071+0.075 0.676+0.107 0.352+0.218 0.135+0.141 0.254+0.146

SHARP + ES - 0.505+0.226 0.556+0.166 0.608+0.179 0.653+0.156 0.367+0.168 0.031+0.067 0.563+0.156 0.164+0.093 0.154+0.137 0.199+0.187

SXR + ES - 0.722+0.074 0.735+0.070 0.737+0.081 0.753+0.084 0.707+0.211 0.044+0.103 0.780+0.063 0.444+0.211 0.282+0.172 0.221+0.272

ALL + ES - 0.743+0.073 0.735+0.070 0.768+0.070 0.753+0.084 0.707+0.211 0.044+0.103 0.780+0.063 0.132+0.134 0.111+0.106 0.040+0.072

PIL – ES - 0.664+0.086 0.659+0.080 0.667+0.039 0.678+0.111 0.411+0.129 0.084+0.091 0.675+0.121 0.368+0.288 0.117+0.188 0.207+0.270

SHARP – ES - 0.416+0.238 0.413+0.216 0.464+0.165 0.456+0.132 0.410+0.193 0.036+0.073 0.422+0.165 0.129+0.097 0.096+0.132 0.107+0.068

SXR – ES - 0.774+0.066 0.755+0.078 0.761+0.069 0.757+0.076 0.581+0.146 0.047+0.077 0.780+0.063 0.494+0.205 0.321+0.214 0.406+0.219

ALL – ES - 0.774+0.066 0.782+0.080 0.761+0.069 0.771+0.073 0.720+0.146 0.051+0.082 0.780+0.063 0.152+0.130 0.039+0.082 0.057+0.087



Enhancement of the Probabilistic Forecast

BS, M flares Expert scores (ES) SVM RBF SVM Sigmoid BS, X flares Expert Scores (ES) SVM RBF SVM Sigmoid

Expert scores (ES) 0.0918+0.0041 - - Expert scores 
(ES) 0.0111+0.0012 - -

ALL + ES - 0.0728+0.0043 0.0728+0.0043 ALL + ES - 0.0067+0.0013 0.0066+0.0013

ALL – ES - 0.0719+0.0042 0.0720+0.0042 ALL – ES - 0.0067+0.0013 0.0062+0.0013

• Performance of the probabilistic forecast can be measured by Brier Skill Score
• Probabilities estimated by Support Vector Classifiers (Platt 1999) trained on all features except the SWPC NOAA

expert predictions have lower BS (give better prediction) than expert-based probabilities.
• Operational probabilistic prediction for 2016-2017 also has lower BS than the SWPC NOAA predictions



Conclusions



IMIDSF (https://helioportal.nas.nasa.gov) is a fully-functional database of solar flares which:

• Integrates various flare lists and catalogs together with flare-related events
• Identifies uniquely-matched flare events based on time and position information
•Allows to search for the flare events based on their physical descriptors and observational coverage

We are currently working on IDSEAR database which:

• Combines solar events (flares, CMEs, eruptions etc) with properties of solar active regions and observational coverage
• Provides an opportunity for combined queries of these parameters
• (Planned) provides the user with unique AR descriptors and data products

ML forecasts of the solar flares demonstrate promising results: 

• Binary (yes/no) forecasts of M/X-class flares based on each feature group (PIL, SHARP, SXR) separately have 
the same or better performance than the SWPC NOAA operational forecasts.
• It is possible to enhance binary forecast of M/X-class flares by considering joint magnetic (PIL, SHARP) and 
Soft X-ray characteristics.
• Probabilistic forecast of M-class and X-class flares based on the Support Vector Machine is better than the 
SWPC NOAA operational forecasts in terms of Brier Skill Score.



A combination of comprehensive data 
integration and representation 

techniques and advanced machine 
learning algorithms is required for 
accurate prediction of solar activity 
and data discovery in solar physics

We are living in an Era of large 
undiscovered scientific data volumes. 

We should use this advantage.



Thank You for 
Your Attention!


